

Independent Component Analysis

AIM Lab group meeting, May 19, 2010
Presented by: David Lebech

– in Clojure

Outline
● Independent Component Analysis

– A quick intro
● Clojure

– Another quick intro
● Results
● Future work and conclusion

Motivation
● I wanted:

– To learn a new programming language
● Clojure

– Apply the language to a specific problem
● Solution:

– Build upon last year's ICA research
– Implement an ICA algorithm in Clojure

What is ICA?
● Separates data into maximally

independent components
● We assume that the original signals are

independent
– P(A ∩ B) = P(A)*P(B)

● We assume that the original signals are
linearly mixed

– x1 = a*s1 + b*s2

ICA – an intuitive example
● The cocktail party problem

– n persons in a room
● All speaking at the same time

– n mixed signals
● E.g. n microphones in different locations

– Our brain can easily distinguish the n
signals

– A computer needs help, e.g. ICA

Definition of ICA
● Given an m by n data matrix x

– m is the (assumed) number of original
signals

– n is the number of data points
● Assume that x is a linear mix of original

signals s, according to:
x = As

● A is thus an m by m mixing matrix

Definition of ICA – cont.
● Goal is to find an unmixing matrix W such

that:
s' = Wx

● s' is an approximation to the original
signals s

● W is the inverse of A
– W = A-1

ICA caveats
● We cannot determine the original sign

(+/-) of the found components
● We cannot determine the order of the

found components.
● The distributions of the original signals

most be nongaussian
– gaussian distribution = normal

distribution

How does ICA work?
● Central Limit Theorem

– The distribution of the sum of
independent variables is more
gaussian than the distribution of the
variables themselves

● For an unmixing vector w, ICA maximizes
the nongaussianity of

wTx
Let's look at an example

ICA example – random signals

Scatter-plot of two random signals, along
with their distributions which are uniform

ICA example – mixed signals

Scatter-plot of the mixed signals

ICA example – preprocessing
● Whitening of data

components:
● Uncorrelation
● Variances equal

unity

ICA example – whitened data

Scatter-plot of whitened mixed signals,
along with their distributions which are more
gaussian than the original signals

ICA example – finding
components intuitively

● Find weight
vectors w1, w2
that “rotate” the
mixed signals

● w1 and w2
maximize non-
gaussianity of the
components of x

Principal Components Analysis
versus ICA

● PCA finds components with decreasing
“importance”

● ICA finds maximally independent
components

● PCA is sometimes
used as a pre-
processing step
for ICA

Clojure overview
● Dynamic

– Direct interaction through the REPL
● REPL = Read Eval Print Loop
● Compiles on-the-fly

● LISP dialect
● Functional programming language

– Functions are first-class objects

Clojure overview
● Designed for concurrency

– Software transactional memory (STM)
– Immutable and persistent data structures

● Runs on the Java Virtual Machine (JVM)
– Compiles into bytecode
– Access to the entire Java library

● But discourages use of Java data
structures since they are not immutable

Clojure syntax

()

Clojure syntax
● But seriously, it is very sparse
● Clojure uses the code-as-data principle

as other LISPs
– S-expressions “()” are parsed into data

structures and then compiled
● In other words, everything is basically a

data structure
– Prefix notation

Is Clojure cool?
● Potentially

– It is gaining a lot of attention
– A lot of people are overly excited about it
– Makes concurrency easier

● No locking
● It requires a totally different mindset than

normal OO/imperative programming
– I haven't gotten it yet

ICA and Clojure – challenges
● Going from mathematical definition to

code
● Understanding Clojure

– Working with immutable data structures
● Data cannot “change”

– Recursion versus looping

FastICA
● Assumes data to be centered and

whitened
● Uses negentropy to measure

nongaussianity
– Negentropy is maximal for a distribution

that is nongaussian

FastICA
● General update rule (from literature):

w' = E{xg(wTx)} – E{g'(wTx)}w
w = w' / ||w'||
repeat until converged (i.e. old and new

w point in same direction)
● In practice (from Matlab implementation)

w' = E{x(xTw)^3} – 3w
w = w' / ||w'||

Current progress
● FastICA implemented in Clojure

– Based largely on the Matlab version
– Uses the Clojure library Incanter

● Goal of Incanter is to supply R-like
functionality in Clojure

– Simple “deflation” approach for
decorrelating found basis vectors

Current progress
● Comparison with Matlab implementation

– Looking at found independent
components (very subjective)

– Measuring running time
● Requires very large data sets

– Current experiments run in ms
● I haven't done this yet.

Test 1
● Two sources

– s1 = sin(x), x = 0,...,99
– s2 = sin(3x), x = 0,...,99

● Two mixed signals (linear combinations)
– x1 = s1 – 2*s2
– x2 = 1.73*s1 + 3.41*s2

Test 1 – original sources

s1

s2

Test 1 – mixed signals

x1

x2

Test 1 – found components

Matlab implementation Clojure implementation

Test 2
● Add a third component

– s3 = sqrt(x), x = 0,...,99
● x1, x2 and x3 are

mixed by a random
mixing matrix A with
values between
-3 and 3

s3

Test 2 – mixed signals

x1 x2

x3

Test 2 – found components

Test 3
● Add a fourth component

– s4 = x, x = 0,...,99
● x1, x2, x3 and x4 are

mixed by a random
mixing matrix A with
values between
-3 and 3

s3

Test 3 – found components

Test results
● Same algorithm, different outcome, why?

– Different mixing matrices
● But for test 1, they were identical

– Different start vectors
● Converges differently?

ICA on real world data
● Demixing sound signals
● Face recognition

– Facial “components”
● Stock market prices

– Underlying hidden factors
● I tried this

ICA on stock market
● Three large stock market indexes

– Dow Jones (USA)
– Nikkei (Japan)
– FTSE (Europe)

● Monthly data from 1991-2010
● Each stock index is an observed variable
● Each time point is an observation

ICA on stock market
● Hypothesis:

– The three indexes have some underlying
hidden factors that affect all three stock
markets

● Can this be true?

Stock market indexes

Components

Comparison

Stock market indexes
● Not much can be concluded currently

– Requires more domain/history
knowledge

– More tests need to be carried out
– Maybe it shows the unpredictability of the

stock market

Future work and conclusion
● ICA successfully implemented in Clojure

in the simplest version
– Satisfying result for finding few

components
– Need more experiments on different and

larger data sets
– Implement more contrast functions
– Implement symmetric decorrelation

Questions?

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

