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Motivation
● I wanted:

– To learn a new programming language
● Clojure

– Apply the language to a specific problem
● Solution:

– Build upon last year's ICA research
– Implement an ICA algorithm in Clojure



  

What is ICA?
● Separates data into maximally 

independent components
● We assume that the original signals are 

independent
– P(A ∩ B) = P(A)*P(B)

● We assume that the original signals are 
linearly mixed

– x1 = a*s1 + b*s2



  

ICA – an intuitive example
● The cocktail party problem

– n persons in a room
● All speaking at the same time

– n mixed signals
● E.g. n microphones in different locations

– Our brain can easily distinguish the n 
signals

– A computer needs help, e.g. ICA



  

Definition of ICA
● Given an m by n data matrix x

– m is the (assumed) number of original 
signals

– n is the number of data points
● Assume that x is a linear mix of original 

signals s, according to:
x = As

● A is thus an m by m mixing matrix



  

Definition of ICA – cont.
● Goal is to find an unmixing matrix W such 

that:
s' = Wx

● s' is an approximation to the original 
signals s

● W is the inverse of A
– W = A-1



  

ICA caveats
● We cannot determine the original sign 

(+/-) of the found components
● We cannot determine the order of the 

found components.
● The distributions of the original signals 

most be nongaussian
– gaussian distribution = normal 

distribution



  

How does ICA work?
● Central Limit Theorem

– The distribution of the sum of 
independent variables is more 
gaussian than the distribution of the 
variables themselves

● For an unmixing vector w, ICA maximizes 
the nongaussianity of

wTx
Let's look at an example



  

ICA example – random signals

Scatter-plot of two random signals, along 
with their distributions which are uniform



  

ICA example – mixed signals

Scatter-plot of the mixed signals



  

ICA example – preprocessing
● Whitening of data 

components:
● Uncorrelation
● Variances equal 

unity



  

ICA example – whitened data

Scatter-plot of whitened mixed signals, 
along with their distributions which are more 
gaussian than the original signals



  

ICA example – finding 
components intuitively

● Find weight 
vectors w1, w2 
that “rotate” the 
mixed signals

● w1 and w2 
maximize non-
gaussianity of the 
components of x



  

Principal Components Analysis 
versus ICA

● PCA finds components with decreasing 
“importance”

● ICA finds maximally independent 
components

● PCA is sometimes
used as a pre-
processing step
for ICA



  

Clojure overview
● Dynamic

– Direct interaction through the REPL
● REPL = Read Eval Print Loop
● Compiles on-the-fly

● LISP dialect
● Functional programming language

– Functions are first-class objects



  

Clojure overview
● Designed for concurrency

– Software transactional memory (STM)
– Immutable and persistent data structures

● Runs on the Java Virtual Machine (JVM)
– Compiles into bytecode
– Access to the entire Java library

● But discourages use of Java data 
structures since they are not immutable



  

Clojure syntax

()



  

Clojure syntax
● But seriously, it is very sparse
● Clojure uses the code-as-data principle 

as other LISPs
– S-expressions “()” are parsed into data 

structures and then compiled
● In other words, everything is basically a 

data structure
– Prefix notation



  

Is Clojure cool?
● Potentially

– It is gaining a lot of attention
– A lot of people are overly excited about it
– Makes concurrency easier

● No locking
● It requires a totally different mindset than 

normal OO/imperative programming
– I haven't gotten it yet



  

ICA and Clojure – challenges
● Going from mathematical definition to 

code
● Understanding Clojure

– Working with immutable data structures
● Data cannot “change”

– Recursion versus looping



  

FastICA
● Assumes data to be centered and 

whitened
● Uses negentropy to measure 

nongaussianity
– Negentropy is maximal for a distribution 

that is nongaussian



  

FastICA
● General update rule (from literature):

w' = E{xg(wTx)} – E{g'(wTx)}w
w = w' / ||w'||
repeat until converged (i.e. old and new 

w point in same direction)
● In practice (from Matlab implementation)

w' = E{x(xTw)^3} – 3w
w = w' / ||w'||



  

Current progress
● FastICA implemented in Clojure

– Based largely on the Matlab version
– Uses the Clojure library Incanter

● Goal of Incanter is to supply R-like 
functionality in Clojure

– Simple “deflation” approach for 
decorrelating found basis vectors



  

Current progress
● Comparison with Matlab implementation

– Looking at found independent 
components (very subjective)

– Measuring running time
● Requires very large data sets

– Current experiments run in ms
● I haven't done this yet.



  

Test 1
● Two sources

– s1 = sin(x), x = 0,...,99
– s2 = sin(3x), x = 0,...,99

● Two mixed signals (linear combinations)
– x1 = s1 – 2*s2
– x2 = 1.73*s1 + 3.41*s2



  

Test 1 – original sources

s1

s2



  

Test 1 – mixed signals

x1

x2



  

Test 1 – found components

Matlab implementation Clojure implementation



  

Test 2
● Add a third component

– s3 = sqrt(x), x = 0,...,99
● x1, x2 and x3 are 

mixed by a random 
mixing matrix A with 
values between 
-3 and 3

s3



  

Test 2 – mixed signals

x1 x2

x3



  

Test 2 – found components



  

Test 3
● Add a fourth component

– s4 = x, x = 0,...,99
● x1, x2, x3 and x4 are 

mixed by a random 
mixing matrix A with 
values between 
-3 and 3

s3



  

Test 3 – found components



  

Test results
● Same algorithm, different outcome, why?

– Different mixing matrices
● But for test 1, they were identical

– Different start vectors
● Converges differently?



  

ICA on real world data
● Demixing sound signals
● Face recognition

– Facial “components”
● Stock market prices

– Underlying hidden factors
● I tried this



  

ICA on stock market
● Three large stock market indexes

– Dow Jones (USA)
– Nikkei (Japan)
– FTSE (Europe)

● Monthly data from 1991-2010
● Each stock index is an observed variable
● Each time point is an observation



  

ICA on stock market
● Hypothesis:

– The three indexes have some underlying 
hidden factors that affect all three stock 
markets

● Can this be true?



  

Stock market indexes



  

Components



  

Comparison



  

Stock market indexes
● Not much can be concluded currently

– Requires more domain/history 
knowledge

– More tests need to be carried out
– Maybe it shows the unpredictability of the 

stock market



  

Future work and conclusion
● ICA successfully implemented in Clojure 

in the simplest version
– Satisfying result for finding few 

components
– Need more experiments on different and 

larger data sets
– Implement more contrast functions
– Implement symmetric decorrelation



  

Questions?

Thank you
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